加拿大留学技术移民潜力专业

文章来源:留学预科 作者:Ada

加拿大技术移民朝阳行业:数据挖掘。维克托迈尔-舍恩伯格的大数据一书告诉我们大数据时代到临,它迅速的渗入人们生活、工作和学习等各个方面,并且正在这些方面掀起一场大变革。

   山东师范大学留学预科班(https://www.liuxue114.com/sdnuflc/)报道:加拿大技术移民朝阳行业:数据挖掘。维克托迈尔-舍恩伯格的大数据一书告诉我们大数据时代到临,它迅速的渗入人们生活、工作和学习等各个方面,并且正在这些方面掀起一场大变革。而对于企业来讲,如何在这个信息爆炸的年代,第一时间内获得或者找到最有价值的信息和资源,则成为企业之间激烈竞争取胜的重要的因素,所以商业智能应运而生,而与之相关的技术和工具Data Mining则以惊人速度得到快速、蓬勃的发展,并且在北美以至全球都有越来越火的趋势。毫无疑问,相对应的必然是需要大量的此方面的技术人员,并且由于工作性质和数据库相关,职位相对稳定、高薪,很适合华人技术!

  虽然北美就业市场竞争日益激烈,而上述数据处理系列的就业则一枝独秀,因为工作多在大的银行和企业,真正会做的人少、与数据相关等优势而成为“技术移民就业的首选”,尤其是近期此三方面的就业更是在华人移民中掀起一股就业热潮,为广大技术华人带来了难得的就业机遇和意外的惊喜! 数据处理的核心技术——数据挖掘更是得到前所未有的重视和普及,华人技术移民应将数据挖掘技术与个人已有专业知识相结合。

  数据挖掘是一种系统的方法,它被用于对存储在公司数据库内的营销及客户信息进行集合汇总,加工处理,归纳分析,并提供对加强和改进市场营销在战略及战术水平上的决策支持。它是科学与艺术的结合在市场营销中的应用,也是智能商业中最美丽的一簇花。

  随着全球经济一体化的高速发展,当今的市场竟争已趋于白热化。这种竟争开始浸蚀利润并改变着原有的利润分配结构。因此各公司为保持必要的竟争力,开始提供多种产品与服务,期望满足不同的客户口味。但是随着市场越来越成熟,顾客也变得越来越有辩别力了。这无疑对市场开发及营销人员是一个挑战。他们想要获取能带来潜在利润的客户并为他们提供合适的产品与服务。即如何辩别可创造利润的客户;如何保留他们;如何培养一般客户成为利润客户;如何降低成本;如何管理风险等等,已成为市场营销人员必须要解决的问题。将数据挖掘技术应用到市场营销就是在这样的背景下产生的。

  数据挖掘的发展得益于两个因素:信息的可用性与计算机功能的增加。如今银行和公司普遍建有数据仓库并用以存储客户及商业的各种数据。这就使得公司利用这些数据并辅以人口统计学及第三方数据去捕获它的客户消费行为模式及购买习惯成为可能。

  事实上数据挖掘现已成为企业保持竟争力的必要方法。它已广泛地应用在银行,保险,电讯,商品零售等行业的客户关系管理 (CRM),促销活动设计,信用风险预报等诸多方面并扮演着重要的角色。

  可能我们会问“数据挖掘”与“ETL (Extract-Transform-Load)”和“数据库管理”有何不同?

  “数据挖掘”是一个将数据提炼成知识的过程。

  “ETL”是数据准备的过程。

  “数据库管理”是数据搜集,存取及管理的过程。

  如果我们把数据比作食才,则三者的不同可类比于日常生活中的烹调。“数据库管理”类似于食材的采买及保管者,“ETL”就是按照烹饪者的要求清洗整理食才的人,而“数据挖掘”才是烹饪这些食材的掌勺大师傅。当然,这美味的菜肴就是基于“数据挖掘”技术从数据库的数据中获取的满足商业规则的CRM及市场的知识,而享受菜肴的人就是企业管理决策层。简而言之,基于客户数据的CRM知识发现就是由“数据挖掘”人员来完成的,所以“数据挖掘”人员在智能商业团队中占有十分重要的地位。

  在过去的十年间,数据分析人员在就业市场上变得愈来愈抢手。十年前一个大公司仅一名数据分析员,而今仅Customer Knowledge Department就有几十位数据分析人员。我们不禁要说“What is the increase rate!!!”。

  这类工作Title有如下的称谓

  Data Analyst,

  Marketing Analyst,

  Campaign Management Analyst,

  Marketing consultant,

  Marketing assistant,

  Report analyst,

  Campaign analyst,

  Survey Analyst,

  Statistician,

  BI Analyst,

  Treasury Analyst。

  那么我们又要问什么样的人适合学习并从事“数据挖掘”工作呢?

  答案是这样的,如果你有SAS(或SPSS)编程语言基础的;或者你有数据库知识的;或者受过MBA训练的,或者你有数学背景的,你就是合适的人选。对一般工作在大多地区的 Data Analyst而言,工资的中位数约60K,而Modeler工资的中位数约为72K。考虑到“数据挖掘”在市场营销中的应用是一种朝阳产业,工作单位多为大银行,大公司并有较好的薪俸和福利,且入门的门栏不高,我们有理由说“数据挖掘”是一值得从事的职业。

电脑版
全部课程分类
  • 立即预约